199 research outputs found

    Detecting Bulbar Involvement in Patients with Amyotrophic Lateral Sclerosis Based on Phonatory and Time-Frequency Features

    Get PDF
    The term bulbar involvement is employed in ALS to refer to deterioration of motor neurons within the corticobulbar area of the brainstem, which results in speech and swallowing dysfunctions. One of the primary symptoms is a deterioration of the voice. Early detection is crucial for improving the quality of life and lifespan of ALS patients suffering from bulbar involvement. The main objective, and the principal contribution, of this research, was to design a new methodology, based on the phonatory-subsystem and time-frequency characteristics for detecting bulbar involvement automatically. This study focused on providing a set of 50 phonatory-subsystem and time-frequency features to detect this deficiency in males and females through the utterance of the five Spanish vowels. Multivariant Analysis of Variance was then used to select the statistically significant features, and the most common supervised classifications models were analyzed. A set of statistically significant features was obtained for males and females to capture this dysfunction. To date, the accuracy obtained (98.01% for females and 96.10% for males employing a random forest) outperformed the models in the literature. Adding time-frequency features to more classical phonatory-subsystem features increases the prediction capabilities of the machine-learning models for detecting bulbar involvement. Studying men and women separately gives greater success. The proposed method can be deployed in any kind of recording device (i.e., smartphone)

    Voiceprint and machine learning models for early detection of bulbar dysfunction in ALS

    Full text link
    Background and Objective: Bulbar dysfunction is a term used in amyotrophic lateral sclerosis (ALS). It refers to motor neuron disability in the corticobulbar area of the brainstem which leads to a dysfunction of speech and swallowing. One of the earliest symptoms of bulbar dysfunction is voice deterioration char-acterized by grossly defective articulation, extremely slow laborious speech, marked hypernasality and severe harshness. Recently, research efforts have focused on voice analysis to capture this dysfunction. The main aim of this paper is to provide a new methodology to diagnose this dysfunction automatically at early stages of the disease, earlier than clinicians can do.Methods: The study focused on the creation of a voiceprint consisting of a pattern generated from the quasi-periodic components of a steady portion of the five Spanish vowels and the computation of the five principal and independent components of this pattern. Then, a set of statistically significant features was obtained using multivariate analysis of variance and the outcomes of the most common supervised classification models were obtained.Results: The best model (random forest) obtained an accuracy, sensitivity and specificity of 88.3%, 85.0% and 95.0% respectively when classifying bulbar vs. control participants but the results worsened when classifying bulbar vs. no-bulbar patients (accuracy, sensitivity and specificity of 78.7%, 80.0% and 77.5% respectively for support vector machines). Due to the great uncertainty found in the annotated corpus of the ALS patients without bulbar involvement, we used a safe semi-supervised support vector machine to relabel the ALS participants diagnosed without bulbar involvement as bulbar and no-bulbar. The perfor-mance of the results obtained increased, especially when classifying bulbar and no-bulbar patients ob-taining an accuracy, sensitivity and specificity of 91.0%, 83.3% and 100.0% respectively for support vector machines. This demonstrates that our model can improve the diagnosis of bulbar dysfunction compared not only with clinicians, but also the methods published to date.Conclusions: The results obtained demonstrate the efficiency and applicability of the methodology pre-sented in this paper. It may lead to the development of a cheap and easy-to-use tool to identify this dysfunction in early stages of the disease and monitor progress

    Seguimiento y control de pacientes fumadores en proceso de deshabituación mediante SMS: una experiencia en e-salud

    Get PDF
    El consumo de tabaco continúa siendo una importante causa de morbilidad y mortalidad. El proceso terapéutico para abandonar el tabaco consiste en la desintoxicación física de la nicotina y en el mantenimiento de la abstinencia de su consumo. Nuestro estudio se sitúa en este contexto, ofreciendo una estrategia de apoyo por SMS y monitorizando al paciente a lo largo del tratamiento. Material y método. Este estudio longitudinal compara dos grupos de pacientes: uno con apoyo a través de SMS y otro, de control, que no disfruta de dicho apoyo. Los pacientes recibieron aleatoriamente mensajes de apoyo y refuerzo positivo, así como preguntas sobre su estado. El resto de la terapia es igual para ambos grupos. Resultados. El grupo que recibía apoyo por SMS presentó unas tasas de abstinencia mejores que el otro (57,1% frente a 42,9%). Los mismos participantes valoran positivamente la metodología y admiten que les ahorra tiempo y viajes. Conclusión. El uso de las TIC para monitorizar y reforzar el proceso de desintoxicación del consumo de tabaco parece ser efectivo y bien acogido por los pacientes.Tobacco consumption continues to be an important cause of morbidity and mortality. The therapeutic process of giving up smoking consists of the physical detoxification of nicotine as well as maintaining abstinence from its consumption. Our study lies in this context, offering a strategy by means of SMS support and monitoring patients throughout their treatment. Material and method. This longitudinal study compares two groups of patients, one with support via SMS and a control group without this support. Patients randomly received support messages and positive reinforcement as well as questions about their status. The rest of the therapy is equal in both groups. Results. The abstinence rates obtained among the group with SMS support were better than those of the other group (57.1% as opposed to 42.9%). They themselves value the methodology successfully, recognizing that it saves time and travel. Conclusion. The use of ICT in the monitoring and support of the detoxification process of tobacco consumption appears to be effective and well accepted by patients

    C2MS: Dynamic Monitoring and Management of Cloud Infrastructures

    Full text link
    Server clustering is a common design principle employed by many organisations who require high availability, scalability and easier management of their infrastructure. Servers are typically clustered according to the service they provide whether it be the application(s) installed, the role of the server or server accessibility for example. In order to optimize performance, manage load and maintain availability, servers may migrate from one cluster group to another making it difficult for server monitoring tools to continuously monitor these dynamically changing groups. Server monitoring tools are usually statically configured and with any change of group membership requires manual reconfiguration; an unreasonable task to undertake on large-scale cloud infrastructures. In this paper we present the Cloudlet Control and Management System (C2MS); a system for monitoring and controlling dynamic groups of physical or virtual servers within cloud infrastructures. The C2MS extends Ganglia - an open source scalable system performance monitoring tool - by allowing system administrators to define, monitor and modify server groups without the need for server reconfiguration. In turn administrators can easily monitor group and individual server metrics on large-scale dynamic cloud infrastructures where roles of servers may change frequently. Furthermore, we complement group monitoring with a control element allowing administrator-specified actions to be performed over servers within service groups as well as introduce further customized monitoring metrics. This paper outlines the design, implementation and evaluation of the C2MS.Comment: Proceedings of the The 5th IEEE International Conference on Cloud Computing Technology and Science (CloudCom 2013), 8 page

    Coscheduling techniques and monitoring tools for non-dedicated cluster computing

    Get PDF
    Our efforts are directed towards the understanding of the coscheduling mechanism in a NOW system when a parallel job is executed jointly with local workloads, balancing parallel perfor-mance against the local interactive response. Explicit and implicit coscheduling techniques in a PVM-Linux NOW (or cluster) have been implemented. Furthermore, dynamic coscheduling remains an open question when parallel jobs are executed in a non-dedicated Cluster. A basis model for dynamic coscheduling in Cluster systems is presented in this paper. Also, one dynamic coscheduling algorithm for this model is proposed. The applicability of this algorithm has been proved and its performance ana-lyzed by simulation. Finally, a new tool (named Monito) for monitoring the different queues of messages in such an environments is presented. The main aim of implementing this facility is to provide a mean of capturing the bottlenecks and overheads of the communication system in a PVM-Linux cluster.Facultad de Informátic

    Voiceprint and machine learning models for early detection of bulbar dysfunction in ALS

    Get PDF
    Background and Objective: Bulbar dysfunction is a term used in amyotrophic lateral sclerosis (ALS). It refers to motor neuron disability in the corticobulbar area of the brainstem which leads to a dysfunction of speech and swallowing. One of the earliest symptoms of bulbar dysfunction is voice deterioration characterized by grossly defective articulation, extremely slow laborious speech, marked hypernasality and severe harshness. Recently, research efforts have focused on voice analysis to capture this dysfunction. The main aim of this paper is to provide a new methodology to diagnose this dysfunction automatically at early stages of the disease, earlier than clinicians can do. Methods: The study focused on the creation of a voiceprint consisting of a pattern generated from the quasi-periodic components of a steady portion of the five Spanish vowels and the computation of the five principal and independent components of this pattern. Then, a set of statistically significant features was obtained using multivariate analysis of variance and the outcomes of the most common supervised classification models were obtained. Results: The best model (random forest) obtained an accuracy, sensitivity and specificity of 88.3%, 85.0% and 95.0% respectively when classifying bulbar vs. control participants but the results worsened when classifying bulbar vs. no-bulbar patients (accuracy, sensitivity and specificity of 78.7%, 80.0% and 77.5% respectively for support vector machines). Due to the great uncertainty found in the annotated corpus of the ALS patients without bulbar involvement, we used a safe semi-supervised support vector machine to relabel the ALS participants diagnosed without bulbar involvement as bulbar and no-bulbar. The performance of the results obtained increased, especially when classifying bulbar and no-bulbar patients obtaining an accuracy, sensitivity and specificity of 91.0%, 83.3% and 100.0% respectively for support vector machines. This demonstrates that our model can improve the diagnosis of bulbar dysfunction compared not only with clinicians, but also the methods published to date. Conclusions: The results obtained demonstrate the efficiency and applicability of the methodology presented in this paper. It may lead to the development of a cheap and easy-to-use tool to identify this dysfunction in early stages of the disease and monitor progress.This work was approved by the Research Ethics Committee for Biomedical Research Projects (CEIm) at the Bellvitge University Hospital in Barcelona and was supported by the Ministerio de Economía y Competitividad (TIN2017-84553-C2-2-R) and the Ministerio de Ciencia e Innovacion (PID2020-113614RBC22). AT is a member of CIMNE, a Severo Ochoa Centre of Excellence (2019-2023) under grant CEX2018-000797-S, funded by MCIN/AEI/10.13039/501100011033. The Neurology Department of the Bellvitge University Hospital in Barcelona permitted the recording of the voices of the participants in its facilities. The clinical records were provided by Carlos Augusto Salazar Talavera. Dr. Marta Fulla and Maria Carmen Majos Bellmunt contributed advice about the process of eliciting the sounds

    Detection of Bulbar Involvement in Patients With Amyotrophic Lateral Sclerosis by Machine Learning Voice Analysis: Diagnostic Decision Support Development Study

    Get PDF
    Background: Bulbar involvement is a term used in amyotrophic lateral sclerosis (ALS) that refers to motor neuron impairment in the corticobulbar area of the brainstem, which produces a dysfunction of speech and swallowing. One of the earliest symptoms of bulbar involvement is voice deterioration characterized by grossly defective articulation; extremely slow, laborious speech; marked hypernasality; and severe harshness. Bulbar involvement requires well-timed and carefully coordinated interventions. Therefore, early detection is crucial to improving the quality of life and lengthening the life expectancy of patients with ALS who present with this dysfunction. Recent research efforts have focused on voice analysis to capture bulbar involvement. Objective: The main objective of this paper was (1) to design a methodology for diagnosing bulbar involvement efficiently through the acoustic parameters of uttered vowels in Spanish, and (2) to demonstrate that the performance of the automated diagnosis of bulbar involvement is superior to human diagnosis. Methods: The study focused on the extraction of features from the phonatory subsystem-jitter, shimmer, harmonics-to-noise ratio, and pitch-from the utterance of the five Spanish vowels. Then, we used various supervised classification algorithms, preceded by principal component analysis of the features obtained. Results: To date, support vector machines have performed better (accuracy 95.8%) than the models analyzed in the related work. We also show how the model can improve human diagnosis, which can often misdiagnose bulbar involvement. Conclusions: The results obtained are very encouraging and demonstrate the efficiency and applicability of the automated model presented in this paper. It may be an appropriate tool to help in the diagnosis of ALS by multidisciplinary clinical teams, in particular to improve the diagnosis of bulbar involvement
    corecore